Codimension and pseudometric in co-Heyting algebras
نویسندگان
چکیده
In this paper we introduce a notion of dimension and codimension for every element of a distributive bounded lattice L. These notions prove to have a good behavior when L is a co-Heyting algebra. In this case the codimension gives rise to a pseudometric on L which satisfies the ultrametric triangle inequality. We prove that the Hausdorff completion of L with respect to this pseudometric is precisely the projective limit of all its finite dimensional quotients. This completion has some familiar metric properties, such as the convergence of every monotonic sequence in a compact subset. It coincides with the profinite completion of L if and only if it is compact or equivalently if every finite dimensional quotient of L is finite. In this case we say that L is precompact. If L is precompact and Hausdorff, it inherits many of the remarkable properties of its completion, specially those regarding the join/meet irreducible elements. Since every finitely presented co-Heyting algebra is precompact Hausdorff, all the results we prove on the algebraic structure of the latter apply in particular to the former. As an application, we obtain the existence for every positive integers n, d of a term tn,d such that in every co-Heyting algebra generated by an n-tuple a, tn,d(a) is precisely the maximal element of codimension d.
منابع مشابه
Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملOn Heyting algebras and dual BCK-algebras
A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...
متن کاملAPPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS
Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.
متن کاملSimilarity DH-Algebras
In cite{GL}, B. Gerla and I. Leuc{s}tean introduced the notion of similarity on MV-algebra. A similarity MV-algebra is an MV-algebra endowed with a binary operation $S$ that verifies certain additional properties. Also, Chirtec{s} in cite{C}, study the notion of similarity on L ukasiewicz-Moisil algebras. In particular, strong similarity L ukasiewicz-Moisil algebras were defined. In this paper...
متن کامل